Product Kernel Interpolation for Scalable Gaussian Processes

نویسندگان

  • Jacob R. Gardner
  • Geoff Pleiss
  • Ruihan Wu
  • Kilian Q. Weinberger
  • Andrew Gordon Wilson
چکیده

Recent work shows that inference for Gaussian processes can be performed efficiently using iterative methods that rely only on matrix-vector multiplications (MVMs). Structured Kernel Interpolation (SKI) exploits these techniques by deriving approximate kernels with very fast MVMs. Unfortunately, such strategies suffer badly from the curse of dimensionality. We develop a new technique for MVM based learning that exploits product kernel structure. We demonstrate that this technique is broadly applicable, resulting in linear rather than exponential runtime with dimension for SKI, as well as state-of-the-art asymptotic complexity for multi-task GPs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)

We introduce a new structured kernel interpolation (SKI) framework, which generalises and unifies inducing point methods for scalable Gaussian processes (GPs). SKI methods produce kernel approximations for fast computations through kernel interpolation. The SKI framework clarifies how the quality of an inducing point approach depends on the number of inducing (aka interpolation) points, interpo...

متن کامل

GPatt: Fast Multidimensional Pattern Extrapolation with Gaussian Processes

Gaussian processes are typically used for smoothing and interpolation on small datasets. We introduce a new Bayesian nonparametric framework – GPatt – enabling automatic pattern extrapolation with Gaussian processes on large multidimensional datasets. GPatt unifies and extends highly expressive kernels and fast exact inference techniques. Without human intervention – no hand crafting of kernel ...

متن کامل

Deep Kernel Learning

We introduce scalable deep kernels, which combine the structural properties of deep learning architectures with the nonparametric flexibility of kernel methods. Specifically, we transform the inputs of a spectral mixture base kernel with a deep architecture, using local kernel interpolation, inducing points, and structure exploiting (Kronecker and Toeplitz) algebra for a scalable kernel represe...

متن کامل

Thoughts on Massively Scalable Gaussian Processes

We introduce a framework and early results for massively scalable Gaussian processes (MSGP), significantly extending the KISS-GP approach of Wilson and Nickisch (2015). The MSGP framework enables the use of Gaussian processes (GPs) on billions of datapoints, without requiring distributed inference, or severe assumptions. In particular, MSGP reduces the standard O(n) complexity of GP learning an...

متن کامل

Fast Kernel Learning for Multidimensional Pattern Extrapolation

The ability to automatically discover patterns and perform extrapolation is an essential quality of intelligent systems. Kernel methods, such as Gaussian processes, have great potential for pattern extrapolation, since the kernel flexibly and interpretably controls the generalisation properties of these methods. However, automatically extrapolating large scale multidimensional patterns is in ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.08903  شماره 

صفحات  -

تاریخ انتشار 2018